skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lanman, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Visual Turing Test is the ultimate goal to evaluate the realism of holographic displays. Previous studies have focused on addressing challenges such as limited e ́tendue and image quality over a large focal volume, but they have not investigated the effect of pupil sampling on the viewing experience in full 3D holograms. In this work, we tackle this problem with a novel hologram generation algorithm motivated by matching the projection operators of incoherent (Light Field) and coherent (Wigner Function) light transport. To this end, we supervise hologram computation using synthesized photographs, which are rendered on-the-fly using Light Field refocusing from stochastically sampled pupil states during optimization. The proposed method produces holograms with correct parallax and focus cues, which are important for passing the Visual Turing Test. We validate that our approach compares favorably to state-of-the-art CGH algorithms that use Light Field and Focal Stack supervision. Our experiments demonstrate that our algorithm improves the viewing experience when evaluated under a large variety of different pupil states. 
    more » « less
  2. Holographic displays promise to deliver unprecedented display capabilities in augmented reality applications, featuring a wide field of view, wide color gamut, spatial resolution, and depth cues all in a compact form factor. While emerging holographic display approaches have been successful in achieving large étendue and high image quality as seen by a camera, the large étendue also reveals a problem that makes existing displays impractical: the sampling of the holographic field by the eye pupil. Existing methods have not investigated this issue due to the lack of displays with large enough étendue, and, as such, they suffer from severe artifacts with varying eye pupil size and location. We show that the holographic field as sampled by the eye pupil is highly varying for existing display setups, and we propose pupil-aware holography that maximizes the perceptual image quality irrespective of the size, location, and orientation of the eye pupil in a near-eye holographic display. We validate the proposed approach both in simulations and on a prototype holographic display and show that our method eliminates severe artifacts and significantly outperforms existing approaches. 
    more » « less